Improved Bayesian Network inference using relaxed gene ordering

نویسندگان

  • Dongxiao Zhu
  • Hua Li
چکیده

Bayesian Networks (BNs) have become one of the most powerful means of reconstructing signalling pathways in silico. Excessive computational loads limit the applications of BNs to learn larger sized network structures. Recent bioinformatics research found that signalling pathways are likely hierarchically organised. Genes resident in hierarchical layers constitute biological constraint, which can be readily used by BN structural learning algorithms to substantially reduce the computational load. We propose a constrained BN structural learning algorithm that solves the NP-complete computational problem in a heuristic manner. We demonstrate the utility of our algorithm in constructing two important signalling pathways in S. cerevisiae.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis

‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Variable and Value Ordering for MPE Search

In Bayesian networks, amost probable explanation (MPE) is a most likely instantiation of all network variables given a piece of evidence. Recent work proposed a branch-and-boundsearch algorithm that finds exact solutions to MPE queries, where bounds are computed on a relaxed network obtained by a technique known as node splitting. In this work we study the impact of variable and value ordering ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of data mining and bioinformatics

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2010